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Abstract. Low-frequency shot noise and dc current profiles for a double-barrier resonant-
tunnelling structure (DBRTS) under a strong magnetic field applied perpendicular to the
interfaces have been studied. Structures with a 3D and 2D emitter have both been considered.
The calculations, carried out with the Keldysh Green’s function technique, show strong
dependencies of both the current and noise profiles on the bias voltage and magnetic field.
The noise spectrum appears sensitive to charge accumulation due to barrier capacitances, and
both noise and dc current are extremely sensitive to the Landau level broadening in the emitter
electrode and can be used as a powerful tool to investigate the latter. As an example, two
specific shapes of the level broadening have been considered—a semi-elliptic profile resulting
from the self-consistent Born approximation, and a Gaussian one resulting from the lowest-order
cumulant expansion.

1. Introduction

In recent years, there has been great interest in resonant tunnelling through double-barrier
resonant tunnelling structures (DBRTS) (figure 1). Such structures have been the focus of
many experimental and theoretical investigations since the conception by Tsu and Esaki [1]
and first realization of negative differential resistance by Sollneret al [2]. Many important
characteristics of DBRTS have been intensely studied, e.g. dc properties, phonon-assisted
tunnelling, time-dependent processes and frequency response. Noise properties of DBRTS
have also been studied both experimentally [3] and theoretically [4, 5, 6, 7, 8]. At low
temperatures and in the presence of a transport current, shot noise is the dominant source
of electrical noise. This kind of noise is due to discreteness of the electron charge, and it is
sensitive to the degree of correlation between tunnelling processes. In general, a correlation
leads to an additional frequency dependence of shot noise, as well as to its suppression below
the so-called full noise,S(0) = 2e|Idc| (at T = 0) [9]. HereS(ω) is the noise spectrum (see
the exact definition below), whileIdc is the average dc current. In a mesoscopic conductor
having several independent modes of transverse motion (channels), the noise is determined
by the partial transmission probabilitiesTm as [10, 11, 12]S ∝ ∑

m Tm(1 − Tm), while
the conductance goes asG ∝ ∑

m Tm. Suppression of the shot noise is thus expected in
a phase-coherent system when the tunnelling probabilities are of the order unity for open
quantum channels.

Our concern is a DBRTS in a strong magnetic field perpendicular to the interfaces.
Magnetic field is an important tool for sample characterization because it leads to the
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Figure 1. A schematic illustration of the double-barrier resonant tunnelling structure (DBRTS).

formation of Landau levels, as well as to drastic modification of electron wave functions.
We study the situation where the magnetic fieldB is applied parallel to the tunnelling
currentI, as schematically illustrated in figure 1. In such a configuration, the magnetic
field leads to an effectively one-dimensional tunnelling problem. Consequently, both the
dc current and the noise appear extremely sensitive to the details of the density-of-states
behaviour. We believe that such a sensitivity can provide a powerful tool for investigating
details of the Landau level broadening in resonant tunnelling structures.

The paper is organized as follows. Section 2 describes the model Hamiltonian as well
as the basic expression from which the current and shot noise profiles will be derived in
section 3. In appendix A and appendix B the Green’s functions used in our calculations are
expanded.

As an example, we consider a GaAs+/Al 0.3Ga0.7As/GaAs/Al0.3Ga0.7As/GaAs+ DBRTS,
with the barriers and the well widths of the order of 40–60Å. Such structures were
extensively studied experimentally. In many cases the barrier height is about 300 meV, and
it is assumed that there exists only one quasi-bound state in the well.

2. The model and basic expressions

Consider a DBRTS in the presence of an external magnetic fieldB perpendicular to the
interfaces which are assumed perfect,B ‖ I ‖ z. Within the quantum well, the electron
wave function can be expressed as a product of a quasi-bound stateχ(z) times a wave
function corresponding to the motion in thex–y plane. Let us denote the energy of the
motion in z-direction asε0. Under the Landau gaugeA = (0, Bx, 0) the wave functions
can be specified by the set of quantum numbersα = (n, ky) as

φα(r) = 1√
Ly

exp(ikyy)ϕn(x + l2ky)χ(z). (1)

The corresponding energy levels (measured from the conduction band edge) are

Eα = En = ε0 + h̄ωc

(
n + 1

2

)
. (2)

Here,ϕn(x) denote harmonic oscillator states,ωc ≡ eB/m∗ is the cyclotron frequency, and
l ≡ √

h̄/eB is the Landau magnetic length.
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Figure 2. The equivalent circuit for a DBRTS.

Similarly, electron states in the leads are specified by the quantum numbersβ =
(m, kj,y, kj,z), wherej ≡ e (c) refers to emitter (collector) states, respectively. The corres-
ponding wave functions and energy levels under the bias eV are given as:

φj,β(r) = 1√
LyLz

exp(ikj,zz + ikj,yy)ϕm(x + l2kj,y) (3)

Ej,β = (h̄kj,z)
2

2m∗ + h̄ωc

(
m + 1

2

)
+ aj eV (4)

where 0< ae < 1 andac = ae − 1 (the symmetricae = 0.5 case will be considered in our
numerical calculations). We arrive at the model Hamiltonian

H = He + HT =
∑
j,β

Ej,βc
†
j,βcj,β +

∑
α

Eαc†
αcα +

∑
j,α,β

[
Vj,βαc†

αcj,β + HC
]

(5)

where the tunnel matrix elementsVj,βα have to be calculated using the eigenstates listed
above. Since the interfaces are assumed to be perfect, the quantum numbersn andky are
conserved during the tunnelling process, and so the calculation of the matrix elementsVj,βα

reduces to the solving of a one-dimensional Schrödinger equation [13], followed with the
application of the Bardeen prescription [14]. Consequently, the tunnelling matrix elements
can be written as

Vj,βα = δm,n δ(ky − kj,y) Vj,n(kj,y, kj,z). (6)

In noise calculations the time dependence of the tunnelling currents flowing through the
DBRTS is important, and hence the junction capacitances should be taken into account.
The effect of the junction capacitances can be included in our model with the help of an
equivalent circuit of the DBRTS as shown in figure 2 [15]. In this circuit, we specify the
currents through the emitter (collector) barriersIe (c)(t) and their resistances asRe (c). The
‘external’ currentI (t) is in this model given by

I (t) = Cc

C
Ie(t) + Ce

C
Ic(t) (7)

whereCe (c) is the capacitance of the emitter (collector) barrier andC = Ce +Cc is the total
capacitance of the quantum well. In the symmetric caseCe = Cc, we arrive at the simple
relationI (t) = [Ie(t)+ Ic(t)]/2, which was the basis of the Chen and Ting’s [4] calculation
for shot noise in a DBRTS in zero magnetic field. If one ignores the charge accumulation,
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all three currents are the same [5],I (t) = Ie(t) = Ic(t), and the result in this case can be
obtained from the following formulas in the limit of strong asymmetry,Ce (c)/C → 0. The
asymmetry in capacitances is of course not important for the dc current, where

Idc = Idc,e = Idc,c. (8)

In the further analysis it is convenient to use ¯h = 1, and then restore ¯h again in the final
expressions and order-of-magnitude estimates.

The tunnelling currentIe flowing into the well from the emitter and the currentIc

flowing out of the well to the collector are in general different. They are given by the
expressions

Idc,j = −eκj 〈Ṅj (t)〉 = −i eκj

〈
[HT (t), Nj (t)]

〉
= −i 2eκj

∑
β,α

[
Vj,βα〈c†

α(t)cj,β(t)〉 − V ∗
j,βα〈c†

j,β(t)cα(t)〉
]

(9)

where Nj(t) are the Heisenberg number-of-particles operators,κe ≡ 1, κc ≡ −1, and a
spin-degeneracy factor 2 is introduced.

The shot noise spectrum is defined as the Fourier transform of the current–current
autocorrelation function as [9]

S(ω) = 2
∫ ∞

−∞
S(t)eiωt dt = 4

∫ ∞

0
S(t) cos(ωt) dt (10)

whereS(t) is the quantum mechanical and statistical average of the current–current anti-
commutator:

S(t) = 1

2
〈{1I (t) , 1I (0)}〉 = 1

2
〈{I (t) , I (0)}〉 − I 2

dc. (11)

From (7) and (9), it can be expressed (having in mind the spin-degeneracy factor of 2) as

S(t) = −e2
∑

j,j0,α,α0,β,β0

ηjηj0

[
Vj,βαVj0,β0α0

〈{
c†
α(t)cj,β(t), c†

α0
(0)cj0,β0(0)

}〉
− Vj,βαV ∗

j0,β0α0

〈{
c†
α(t)cj,β(t), c

†
j0,β0

(0)cα0(0)
}〉

− V ∗
j,βαVj0,β0α0

〈{
c
†
j,β(t)cα(t), c†

α0
(0)cj0,β0(0)

}〉
+ V ∗

j,βαV ∗
j0,β0α0

〈{
c
†
j,β(t)cα(t), c

†
j0,β0

(0)cα0(0)
}〉]

. (12)

whereηe ≡ Cc/C andηc ≡ −Ce/C. Expressed through Feynman’s graphs, these averages
involve only the diagrams with the Green’s functions connecting the timest and 0, since
disconnected parts are all cancelled by the subtraction ofI 2

dc in (11).

3. The results

The task is now to expand the quantum statistical averages appearing in (9) and (12). For a
finite bias, the DBRTS as a whole is not in thermal equilibrium, and it seems thus appropriate
to employ the Keldysh non-equilibrium Green’s function technique [16, 17], where the two
lead subsystems are supposed to have their own local equilibrium.

Expanding (9) yields (appendix A)

Idc,j = −egB

π

∑
n

∫ ∞

−∞
dε γj (n, ε)A(n, ε)

[
fQW(ε) − fj (ε)

]
. (13)
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In the above expression,gB = Lx Ly/2πl2 is the magneticky summation degeneracy factor,
γj (n, ε) is the escape rate to the leadj , fQW(ε) andfj (ε) are the occupation factors, while
A(n, ε) is the spectral function for thenth Landau level in the well,

A(n, ε) = −2 ImGR(n, ε) = γ (n, ε)

(ε − En)2 + [γ (n, ε)/2]2
. (14)

Here,GR(n, ε) is the retarded electron Green’s function, andγ (n, ε) = γe(n, ε) + γc(n, ε)

is the level broadening due to the finite escape rate to the leads. Usually, the energy distance
between the resonant level in the well and the tops of the barriers is much greater than the
escape rate from the well,γ . In this case the tunnelling matrix element (6) can be considered
as a smooth function of the energy in comparison with the energy dependence of the density
of states in the leads,

gj (n, ε) ≡
∑
kj,z

δ(ε − Ej,β).

Thus the escape ratesγj can be expressed as

γj (n, ε) = 2π |Vj |2gj (n, ε).

Consequently, the noise appears to be a sensitive tool for studying the density of states in
the electrodes in a magnetic field. Below, we will perform numerical calculations for two
models for the density of states—for a constant Lorentzian broadening, and for the so-called
self-consistent Born approximation.

Since both leads are assumed to be in thermal equilibrium with different electrochemical
potentials and Fermi energies, the occupation numbers can be expressed as the Fermi
functions

fj (ε) = 1

e(ε−Ef −aj eV )/kBT + 1
. (15)

However, thermal equilibrium is not maintained in the quantum well and thus one cannot
use the Fermi distribution for the electrons in this region. Instead, from the dc-current
conservation law (8), the weighed average occupation factor is determined as [18]

fQW(n, ε) = γe(n, ε)fe(ε) + γc(n, ε)fc(ε)

γ (n, ε)
. (16)

Reintroducing ¯h to return to the proper units, we arrive at the Landauer formula [19]

Idc = egB

πh̄

∑
n

∫
dε Tn(ε)

[
fe(ε) − fc(ε)

]
(17)

with the transmission probabilityTn(ε):

Tn(ε) ≡ γe(n, ε)γc(n, ε)

γ (n, ε)
A(n, ε). (18)

To get a relatively simple expressions for the shot noise from equation (12) we make the
following approximations. First, we assume that the resonant level is situated well inside
the resonant tunnelling region,

|aj eVj + EF − En| � max(h̄ω, γ, νj ) |aj eVj − ε0| � max(h̄ω, γ, νj ) (19)

and thatω � ωc. These inequalities allow us to putfj (ε±ω) → fj (ε) andγj (n, ε±ω) →
γj (n, ε). Second, the temperature is assumed to be low (kBT � γ ), in which case the
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Fermi functions can be approximated as step functions. Keeping those approximations in
mind, we arrive at the following result (appendix B):

S(ω) = S(−ω) = e2gB

π

∑
n

∫
dε

[
fe(ε) − fc(ε)

]2

×
{
A(n, ε)A(n, ε − ω)

[
γeγc(γeCe − γcCc)(γeCc − γcCe)

C2γ 2
− γ 2

e γ 2
c

γ 2

]
+ [A(n, ε) + A(n, ε − ω)]

C2
e + C2

c

C2

γeγc

γ

− 4 Re[GR(n, ε)] Re[GR(n, ε − ω)]
CeCc

C2
γeγc

}
(20)

whereγj ≡ γj (n, ε).
Reinserting ¯h, and using the relation

4γeγc Re[GR(n, ε)]2 = 4Tn(ε) − (γ 2/γeγc)T
2
n (ε)

we arrive at the well known result

S(0) = 2e2gB

πh̄

∑
n

∫
dε Tn(ε) [1 − Tn(ε)]

[
fe(ε) − fc(ε)

]2
. (21)

As one could expect, the zero-frequency shot noise thus does not depend on the barrier
capacitances and the above result coincides with previous calculations which have been
performed for point contacts [10, 11], for arbitrary phase-coherent two-terminal conductors
[12] (neglecting barrier capacitances), and also for a DBRTS in the regime of incoherent
tunnelling [6]. The main feature of our problem is that the combinationsTn(1 − Tn) enter
for each Landau level independently and that the tunnelling probabilitiesTn are strong
functions of the magnetic field. An important feature is that equation (21) holds even if
the inequality (19) is violated. That makes zero-frequency shot noise, together with the dc
current, a powerful tool for investigating the density of states in the leads which manifests
itself through the escape ratesγj .

The results for a particular DBRTS device are shown in figure 3. Here we use the
model of constant Lorentzian broadening of the Landau levels, where the escape rates can
be expressed as (appendix A)

γj (n, ε) = ϒjν

2
√

2

{[(
ε − Ej,n

)2 + (ν/2)2
] [√(

ε − Ej,n

)2 + (ν/2)2 + Ej,n − ε

]}1/2 .

(22)

Here, ϒj is a constant characterizing the strength of the escape rate andEj,n ≡ eV aj +
ωc(n + 1/2). Note that there are peaks in the dimensionless shot noise factorS(ω)/eIdc at
the voltages where an intrawell Landau level passes the emitter’s electrochemical potential.
The shapes of those peaks are determined by an interplay between the quantum suppression
(S(0) ∝ Tn(1 − Tn)) and a finite broadening of the Landau levels in the quantum well. In
addition, a small peak appears in the dc-current curve at the end of the resonant tunnelling
region (in our example, ateV ∼ 55 meV) due to the finite broadening of the lead electron
states. This broadening can typically be of the sizeν ∼ h̄e/m∗µ ∼ 0.5 meV (µ is the
electron mobility).

The effect of the level broadening in the leads is even more pronounced in the case of a
2D emitter. For numerical calculations in this case we employ the so-called self-consistent
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Figure 3. The average current and zero-frequency shot noise (A) and dimensionless noise-to-
current ratio (B) for a symmetric 3D-emitter DBRTS with:ϒe = ϒc = 0.67 meV3/2, h̄ωc = 10
meV, ε0 = 27 meV, EF = 30 meV andν = 0.5 meV. The shot noise ratio solid curve
was obtained from the exact equation (21), while the dashed curve was obtained from the
approximation (24).

Born approximation [20]. In this approximation, the density of states takes a semi-elliptic
form and the escape rate is then given by

γe(n, ε) = ϒe

4 h̄√
2m∗Lez ν

√
1 −

(
ε − Ee,n

ν

)2

(23)

whereEe,n = eV ae + ωc(n + 1/2) + εe, εe is the emitter quasi-bound level andLez is the
width of the 2D emitter. The lead broadening depends in this case on the magnetic field and
is given byν ∼

√
2h̄2eωc/πm∗µ, whereµ is the mobility of the 2DEG. In our example,

µ ∼ 106 cm2 V−1 s−1, at h̄ωc = 10 meV we getν ∼ 0.35 meV. In realistic systems,
sharp edges of the semi-elliptical density-of-states profile are smoothed, the smoothing for a
long-range potential being Gaussian [21]. To check the sensitivity to the smoothing we also
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Figure 4. The average current and zero-frequency shot noise for a symmetrical 2D-emitter
DBRTS with: ϒe = ϒc = 0.67 meV3/2, Lez = 200 Å, h̄ωc = 10 meV,ε0 = 27 meV,EF = 30
meV, εe = 10 meV,ν3D = 0.5 meV andν2D = 0.35 meV. (A) The results obtained from a
semi-elliptic Landau level DOS profile in the emitter (see the inset). (B) The corresponding
results from a Gaussian DOS profile.

made calculations for a Gaussian density-of-states profile. The calculations show that both
the current and the noise profiles can be very sensitive to the degree of such a smoothing.
Figure 4 shows the dc-current and zero-frequency shot noise results for a particular DBRTS
device with a 2D emitter calculated according to the self-consistent Born approximation
(semi-elliptic profile) as well as for a Gaussian profile obtained from a so-called lowest-order
cumulant approximation [20, 22]. A double-peak structure is obtained with the Gaussian
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profile in contrast to the single peak appearing in the case of a semi-elliptic profile.
We believe that our results can serve as a basis for an experimental test of the strength

of the Landau level smearing by impurities. In our example, the splitting of the noise and
current peaks in the case of the Gaussian level broadening case is about 2 meV, and should
be observable at temperaturesT � 20 K.

Figure 5. The frequency dependence of the noise-to-current ratio for a symmetrical DBRTS
with the parametersϒe = ϒc = 0.67 meV3/2, h̄ωc = 10 meV,εc = 27 meV,EF = 30 meV
and with the applied voltageeV = 30 meV. Curve 1 shows the case of symmetric barrier
capacitances (25), while curve 2 is the result when barrier capacitance charge accumulation is
negligible (26).

Finally, we give an expression for the shot noise valid at finite frequency provided that
the inequality (19) holds. Integrating (17) and (20) with a 3D emitter, we arrive at the
expression (appendix B)

S(ω) = 2|eIdc|
C2

{(
C2

e + C2
c

) + 1

γ 2 + ω2

[
CeCc(γ

2
e + γ 2

c ) − (C2
e + C2

e )γeγc

− γeγcC
2 + CeCcγ

2
] }

. (24)

This result is strongly dependent of the bias voltage because of the voltage dependence of
the escape rates. Indeed, for|ε0 − eV aj | � max(h̄ω, γ, νj ),

γj ≡ γj (eV ) = ϒj

2(ε0 − eV aj )√
ε0 − eV aj

.

For our two special cases, symmetric capacitance (Ce = Cc) and no charge accumulation
(Cc (e) → 0), we arrive at relations similar to those obtained by Chen and Ting [4] and by
Büttiker [5] in zero magnetic field:

Ssym(ω) = |eIdc|
[

1 + γ 2

γ 2 + ω2

(
1 − 4

γeγc

γ 2

)]
(25)

Sasym(ω) = 2|eIdc|
[

1 − 2
γeγc

γ 2 + ω2

]
. (26)
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However, the important difference is the strong dependencies of the escape rates on both
electric and magnetic fields. The frequency dependencies of the noise in those two cases are
very different (figure 5) and can serve as a basis for an experimental test of the importance
of the charge accumulation on the barrier capacitances in the DBRTS tunnelling structure.
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Appendix A. The Green’s function expansion for a dc current

The quantum statistical averages appearing in (9) are expanded using the Keldysh non-
equilibrium Green’s function technique [16, 17]. Four different Green’s functions,
appropriate for anS-matrix expansion in the time-loop formalism, are defined along a
closed time path that runs from−∞ to +∞ along theσ = ‘1’ branch and then returns
from +∞ back to−∞ along theσ = ‘2’ branch:

Gσ1σ2(t1 − t2) = −i〈Tt c(t1)c
†(t2)〉 (A1)

whereσn = 1 (2) is means thattn is located on the ‘1’ (‘2’) branch andTt is the generalized
chronological operator ordering physical operators along the closed time path. In the
Fourier-transformed energy space, the Green’s functions are simply related to the retarded
Green’s functions:

G11(ε) = if (ε)A(ε) + GR(ε)

G12(ε) = if (ε)A(ε)

G21(ε) = −i
[
1 − f (ε)

]
A(ε)

G22(ε) = −i
[
1 − f (ε)

]
A(ε) − GR(ε).

(A2)

HereA(ε) ≡ −2 Im[GR(ε)] is the spectral function, whilef (ε) is the occupation number
in the region considered. The following retarded quantum well and lead Green’s functions
are used as the basis in the calculations:

G0
R(α, ε) = [ε − Eα + iγ (n, ε)/2]−1

G0
R(jβ, ε) = [ε − Ej,β + iνj/2]−1.

(A3)

Hereγ (n, ε) = γe(n, ε) + γc(n, ε) is the broadening of the resonant states due to the finite
tunnelling rate to the leads, andνj is the broadening of electron states in the leads due to
electron scattering.

Figure A1. A diagrammatic representation for the dc-current Green’s
functions.
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The dc current is expanded to lowest order in the time-loopS-matrix expansion [17],
which from (9) yields (as diagrammatically represented in figure A1)

Idc,j = −4eκj lim
t́→t

∑
α,β

∫ −∞

−∞
dt1 |Vj,βα|2 Re

〈
Tt c

†
j,β(t1)cα(t1)cj,β(t)c†

α

(
t́
)〉

= 4e
∑
α,β

∫ ∞

−∞
dt1 |Vj,βα|2 Re

[
G11(jβ, t − t1)G12(α, t1 − t)

− G12(jβ, t − t1)G22(α, t1 − t)
]
. (A4)

In the first of the above integrals,t is located on the ‘1’ branch,́t is located on the ‘2’ branch
and thet1-integral is taken along the time loop from−∞ to +∞ and back to−∞. The
latter result, introducing Green’s functions according to (A1), is expressed as an integral
over the ordinary real-time axis from−∞ to ∞. The Fourier transform of this result, with
the substitution of (A2), yields

Idc,j = − e

π

∑
α,β

|Vj,βα|2
∫ ∞

−∞
dε A(α, ε)A(jβ, ε)

[
fQW(ε) − fj (ε)

]
(A5)

wherefQW(ε) andfj (ε) are respectively the occupation numbers in the quantum well and
leads. Using the escape rates from the quantum well states to the leadj , defined as

γj (n, ε) =
∑
kj,z

|Vj |2A(jβ, ε) (A6)

where the tunnelling matrix elements in (6) have been assumed to be independent of any
quantum numbers (Vj,n(k

j
y , k

j
z ) = Vj ) and taking into account theky-independence of the

electron Green’s functions (A(α, ε) = A(n, ε)), we arrive at (13) and (22).

Appendix B. The Green’s function expansion for shot noise

The quantum statistical averages appearing in (12) are expanded in a similar way to that
for the dc current. It is found thatS(ω) is symmetric inω and can be written as a sum of
six different terms (represented by the diagrams in figure A2):

S(ω) = S(−ω) = S1(ω) + S2(ω) + S3(ω) + S4(ω) + S5(ω) + S6(ω). (B1)

S1(ω) is expanded from the first term in (12) as

S1(ω) = S1a(ω) + S1a(−ω) (B2)

with

S1a(ω) = −e2

π

∑
j,j0,α,β

ηjηj0|Vj |2|Vj0|2
∫

dε
∑
σ1,σ2

(−1)σ1+σ2

× [
Gσ21(α, ε)G2σ2(jβ, ε)Gσ12(α, ε − ω)G1σ1(j0β, ε − ω)

]
. (B3)

S2(ω) is the contribution from the fourth term in (12), simply related toS1(ω) as

S2(ω) = S∗
1(ω). (B4)

The second term in (12) has both zeroth- [S3(ω)] and second-order [S4(ω)] contributions:

S3(ω) = e2

π

∑
j,α,β

η2
j |Vj |2

∫
dε G21(jβ, ε)G12(α, ε − ω) + G12(jβ, ε)G21(α, ε − ω)
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Figure A2. A diagrammatic representation for the noise Green’s functions

Figure A3. A typical diagram not taken explicitly into
account since it is already implicitly included in other
diagrams.

S4(ω) = e2

π

∑
j,j0,α,β

ηjηj0|Vj |2|Vj0|2
∫

dε
∑

σoσt={12,21}

∑
σ1,σ2

(−1)σ1+σ2

× [
Gσ1σ0(jβ, ε)Gσ2σ1(α, ε)Gσtσ2(j0β, ε)Gσ0σt

(α, ε − ω)
]
. (B5)

The zeroth- [S5(ω)] and second-order [S6(ω)] contributions from the third term in (12) are
simply given as

S5(ω) = S3(−ω) S6(ω) = S4(−ω). (B6)

The diagrams of the type shown in figure A3 are not taken into account explicitly because
they are already included inS3(ω) and S5(ω), since the quantum well electron Green’s
functions that we use as our basis are originally dressed by tunnelling to the leads [7].
Summing up the different diagrammatic terms we neglect the contribution from the real
part of the lead retarded Green’s functions. This is a reasonable approximation since
it corresponds to a Hilbert transform of the imaginary part (proportional to the escape
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rates) and it appears that, in and above the resonant tunnelling region, its contribution is
negligible. Keeping this in mind, as well as the approximations listed in the main text
(fj (ε ± ω) → fj (ε), γj (n, ε ± ω) → γj (n, ε) andkBT � γ ), we arrive at the result (20).

Integrating the shot noise expression (20) and the dc current (17), we make use of the
following integrals over the resonant tunnelling region, valid for a Landau level located
well inside the resonant tunnelling region according to (19):∫

dε A(n, ε) ≈ 2π∫
dε A(n, ε)A(n, ε − ω) ≈ 4πγ

γ 2 + ω2∫
dε Re[GR(n, ε)] Re[GR(n, ε − ω)] ≈ πγ

γ 2 + ω2
.

(B7)

With these relations, we arrive at (24).
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